Skip to content
Welcome To Atlantic Books! Upto 75% off Across Various Categories.
Upto 75% off Across Various Categories.

Geometry of Deep Learning: A Signal Processing Perspective

by Ye , Jong Chul
Save 30% Save 30%
Original price Rs. 5,114.00
Original price Rs. 5,114.00 - Original price Rs. 5,114.00
Original price Rs. 5,114.00
Current price Rs. 3,580.00
Rs. 3,580.00 - Rs. 3,580.00
Current price Rs. 3,580.00

Estimated Shipping Date

Ships in 1-2 Days

Free Shipping on orders above Rs. 1000

New Year Offer - Use Code ATLANTIC10 at Checkout for additional 10% OFF

Request Bulk Quantity Quote
Book cover type: Paperback
  • ISBN13: 9789811660481
  • Binding: Paperback
  • Subject: Mathematics and Statistics
  • Publisher: Springer Verlag
  • Publisher Imprint: Springer
  • Publication Date:
  • Pages: 330
  • Original Price: EUR 54.99
  • Language: English
  • Edition: N/A
  • Item Weight: 490 grams

The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. 

To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems.

Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.