Skip to content

Booksellers & Trade Customers: Sign up for online bulk buying at trade.atlanticbooks.com for wholesale discounts

Booksellers: Create Account on our B2B Portal for wholesale discounts

Antenna Handbook: Theory, Applications, and Design

by Y. T. Lo
Save 35% Save 35%
Current price ₹10,457.00
Original price ₹16,087.00
Original price ₹16,087.00
Original price ₹16,087.00
(-35%)
₹10,457.00
Current price ₹10,457.00

Imported Edition - Ships in 12-14 Days

Free Shipping in India on orders above Rs. 500

Request Bulk Quantity Quote
+91
Book cover type: Paperback
  • ISBN13: 9781461564614
  • Binding: Paperback
  • Subject: N/A
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Publication Date:
  • Pages: 2305
  • Original Price: EUR 149.99
  • Language: English
  • Edition: Softcover Repri
  • Item Weight: 4260 grams
  • BISAC Subject(s): Telecommunications, Radar, and Electrical

Techniques based on the method of modal expansions, the Rayleigh-Stevenson expansion in inverse powers of the wavelength, and also the method of moments solution of integral equations are essentially restricted to the analysis of electromagnetic radiating structures which are small in terms of the wavelength. It therefore becomes necessary to employ approximations based on "high-frequency techniques" for performing an efficient analysis of electromagnetic radiating systems that are large in terms of the wavelength. One of the most versatile and useful high-frequency techniques is the geometrical theory of diffraction (GTD), which was developed around 1951 by J. B. Keller [1,2,3]. A class of diffracted rays are introduced systematically in the GTD via a generalization of the concepts of classical geometrical optics (GO). According to the GTD these diffracted rays exist in addition to the usual incident, reflected, and transmitted rays of GO. The diffracted rays in the GTD originate from certain "localized" regions on the surface of a radiating structure, such as at discontinuities in the geometrical and electrical properties of a surface, and at points of grazing incidence on a smooth convex surface as illustrated in Fig. 1. In particular, the diffracted rays can enter into the GO shadow as well as the lit regions. Consequently, the diffracted rays entirely account for the fields in the shadow region where the GO rays cannot exist.

Trusted for over 48 years

Family Owned Company

Secure Payment

All Major Credit Cards/Debit Cards/UPI & More Accepted

New & Authentic Products

India's Largest Distributor

Need Support?

Whatsapp Us